

Northern Arizona University

With help from: Xanthe Walker, Jennifer Baltzer, Jill Johnstone, Brendan Rogers, Ted Schuur, Merrit Turetsky, and the *Wildfire Disturbance working group*

Annual area burned is increasing in the ABoVE Domain

TOTAL (ALL, 1965-2017) Slope =0.36 Mha / year (R²=0.64 P<0.001)

FIRE, GLOBAL WARMING, AND THE CARBON BALANCE OF BOREAL FORESTS¹

ERIC S. KASISCHKE

Center for Earth Sciences, Environmental Research Institute of Michigan, P.O. Box 134001, Ann Arbor, Michigan 48113-4001 USA

N. L. CHRISTENSEN, JR.

School of the Environment, Duke University, Durham, North Carolina USA

BRIAN J. STOCKS

Forestry Canada, Ontario Region, Sault Ste. Marie, Ontario, Canada

Net Ecosystem Carbon Balance = dC/dt

Net Ecosystem Carbon Balance = dC/dt

Net Ecosystem Carbon Balance = dC/dt

Is increasing depth of burning driving loss of old, legacy carbon from Arctic and boreal ecosystems?

Stratification of soil carbon age in arctic tundra and boreal forest soil organic layers

400

600

800

Did the Anaktuvuk River Fire burn old carbon?

- 2,000 g C m⁻² combusted in fire
- 73% of C loss was from the soil organic layer
- Mean age of residual soil surface = 25 years
- Deepest burn (15 cm) had oldest surface (1954)

Wildfire in the black spruce forests of Interior Alaska

- Nine sites
- ~100 year old black spruce forests
- Depth of burning
- Dated moss
- Dated base of the soil organic layer
- Aged stand

- Chronosequence: 64% of ecosystem C is a legacy
- Supported by charcoal layers and radiocarbon dating

Willow Creek Fire

Soil organic layer carbon pools

Radiocarbon age profile

Did boreal fires burn legacy carbon?

Megafires in the Northwest Territories Jill Johnstone *Yellowknife **Jennifer Baltzer** Herdson Bay **Merritt Turetsky Xanthe Walker**

Fires in 2014 burned 3.4 million hectares

"the most intense fire behavior seen by this generation"
Ernie Campbell, the Deputy Minister of the Environment for the NWT

NWT Study Design

- 211 sites in 7 burn scars
- ~100 year old black spruce forests
- Depth of burning
- Local and regional emissions
- Dated fine organic matter
- Dated base of the soil organic layer
- Aged stand

Wet

Estimating carbon emissions

Field data modeling

Black Spruce Proportion

5.0

Combustion emissions increased with topographic wetness and increased with the proportion of black spruce

Full Model: moisture category, elevation, stand age, latitude, proportion of black spruce, and pre-fire tree biomass

Remote Sensing extrapolation

topographic wetness index, terrain ruggedness, dNBR, relative change in tree cover, percent black spruce, and percent sand in the top 15 cm of soil.

Study	Kg C/m²	Area (Mha)	Total (Tg C)
This study (Walker et al. 2017)	Field: 3.31 (1.3) Remote: 3.35	2.85	94.3
Veraverbeke et al. 2017	4.81	3.41	164

Differences due to:

- L) Spatial resolution (30m vs 500m) and ability to capture small water bodies
- 2) Regionally specific field training data vs. training data from Alaskan black spruce sites

Effects of spatial resolution on burned area

Combustion and regeneration workshop, Spring 2016

	_
Alaska Boreal Interior	98
Boreal Cordillera	207
Taiga Shield	202
Taiga Plains	418
Softwood Shield	37
Boreal Plains	69
Taiga Cordillera	16
TOTAL	1047

field sites

Structural Equation Modeling to test direct and indirect controls over combustion

Landscape hypothesis for the loss of legacy carbon

Soil Organic Layer (SOL) Combustion

Wet

Dry

Prefire SOL Depth

Dry

% of Prefire Carbon Combusted

Wet

Where is Legacy Carbon on the landscape?

Dry

Wet

Did mega-fires burn legacy carbon?

Dry

Conclusions

- Legacy C is an important component of NECB in fire-disturbed ecosystems.
- For deeper burning to cause a net loss of C to the atmosphere over the fire cycle, legacy carbon must burn.
- We did not detect legacy C loss in tundra or boreal fires.
- A few NWT mega-fire sites that harbored legacy carbon burned to stand age.

Implications

- Even in extreme fire years and deeply burned sites, soil organic layer C is escaping fire.
- Redouble focus on other dimensions of the fire regime:
 - Fire return interval
 - Inter-fire accumulation; shifts in vegetation.
 - Changing landscape stand age structure.

Radiative forcing from a boreal forest fire

	Radiative forcing [W (m² burned)-1]	
Forcing agent	Year 1	Years 0 to 80 (mean)
Long-lived greenhouse gases (CH4 and CO2)	8 ± 3	1.6 ± 0.8
Ozone	6 ± 4	0.1 ± 0.1
Black carbon deposition on snow	3 ± 3	0.0 ± 0.0
Black carbon deposition on sea ice	5 ± 4	0.1 ± 0.1
Aerosols (direct radiative forcing)	17 ± 30	0.2 ± 0.4
Changes in post-fire surface albedo	-5 ± 2	-4.2 ± 2.0
Total ⁻	34 ± 31	-2.3 ± 2.2

Legacy carbon

- The "memory of the system" (Perry 1994)
- Establishes biogeochemical linkages between ecosystems in time
- Indicative of temporal trends in inputs and outputs
 - Historic conditions
 - Escape from disturbance
- Drives transient states in ecosystem response to change